Trigonometry

Imagine
If we take this right angled triangle and sizarge it and shrink it, to lots of different
sing all the sides in proportion

What do you notice?
Did you spotall the angles stayed the same.

To 360° and beyond

We can continue to increase the angle and move the triangle around the origin, if we continue to plot the height of the triangle the graph below is drawn

The Sine Wave

$\boldsymbol{\operatorname { s i n }}$	\cos	$\boldsymbol{t a n}$

This function is called the Sine function (shortened to \sin). It carries on forever, as you continue around the calculator which stores this graph and determines it's values when we need them. determines it's values when we need them.

There is more to Mathematics

Level 2 Additional Maths can be studied during key stage four.
In key stage five A Level Mathematics is the most popular' A-level and A Level Further Mathematics is the perfect accompaniment.
The Further Mathematics Support Programme Wales (FMSPW) is here to support students, teachers and departments across Wales in enriching and developing their Mathematical domain across all key stages.
\square youtube.com/c/RhGMBCFMSPW \square fmspwales@swansea.ac.uk
© @RhGMBC_FMSPW

 furthermaths.wales

If Sine, relates to the opposite and hypotenuse sides, how o you think Cos (ine) related?

Bigger than 90° ?

If we draw our triangles in a unit circle, (often, in maths unit is a word used for 1 , so a unit circle has a radius of 1). As the hypotenuse is 1 , the height of the triangle represents the ratio of the opposite and hypotenuse. If we define the angle as always being measured from the positive horizontal axis we can move the triangle around the origin.

RhGMBC

A Different Angle...? triangle, and do some more enlargements, again the angle stays the same in all of the new triangles we create

Give them a name!
Naming the sides, depending on where they are in relation to the angle, helps us to calculate things.

The adjacent side is next to the angle in question.

For any given angle

The ratio of any two sides is always the same. This is because when the angle is fixed we know all the
triangles are similar, and therefore sides must be in proportion.
When we find the ratio of any two sides for a fixed angle, we will always get the same answer. If w change the angle the ratio will change.

Let's plot it

If we draw a graph of the different
angles on the horizontal axis and the
ratio of the opposite and hypotenuse on
the vertical axis, we get:

What do you think happens to the
graph with angles over 90° ? graph with angles over 90° ?
Would it still be a right angled triangle?

In each of these three triangles, divide the Opposite by the Hypotenuse

In each of these three triangles, divide the Adjacent by the Hypotenuse.

