Quadrare

Make a square

When we square a number we can show this in a picture, it makes a square!

Squaring a number

When we square a number, we multiplying by itse $5 \times 5=25$ or $9 \times 9=81$ or $-6 \times-6=36$ We use a superscript 2 to be the symbol for this operation. René Descartes developed this notation. $5^{2}=25$ or $9^{2}=81$ or $(-6)^{2}=36$

Squaring an unknown When we square a number, we don't know yet we use a letter to represent this number. It could be any letter from any alphabet, quite often it's \boldsymbol{x}, thanks to Descartes again for this

Squaring an expression Pretty much anything can be squared. And we can always draw a square diagram to show it.
$(3 x)^{2}$

The curve touches
The curve touches you think why?

Translations \#1

When the graph of a perfect square quadratic function is drawn, it is a translation in the \boldsymbol{x} direction
$(3 x)^{2}=9 x^{2}$

Perfectly Square

Anything that can be written as something
squared is called a perfect square. All of
these are perfect squares:

$$
(x+3)^{2} \quad(3 x)^{2} \quad(x-4)^{2}
$$

\section*{Quadratics!

Quadratics!
 An expression which has unknowns to a highest power of 2 .

 and maybe some unknowns and possibly a constant, is called a Quadratic. No other powers allowed. These are all quadratic expressions:$(x+3)^{2} \quad 12-r^{2}+3 r \quad x^{2}+42$

$$
(t-10)^{2}-5 \quad x^{2} \quad p^{2}+p-12
$$

$$
7^{2} \quad(x+y+12-5 z)^{2}
$$

Completing the square
When an expression can't be written as a
perfect square
$(x-4)^{2}=x^{2}-8 x+17$
This expression is almost perfect square, but we need to add 1 to the left square, but we need to add to the left
side of expression for it to be identical.

$$
(x-4)^{2}+1=x^{2}-8 x+17
$$

When we can take a quadratic expression and write it in this form, we call it completing the square.

$$
(x+p)^{2}+q
$$

$$
\pi
$$

$$
P
$$

By looking at the graph to the right can you determine it's equation.
What goes in the blue boxes below?

Translations \#2

What has caused the
vertical translation in the
y direction? Can you see?
\qquad π
$y=(x \square)^{2}$

In key stage five A Level Mathematics is the most popular ${ }^{1}$ A-level and A Level Further Mathematics is the perfect accompaniment.
The Further Mathematics Support Programme Wales (FMSPW) is here to support students, teachers and departments across Wales in enriching and developing their Mathematical domain across all key stages

Enrichment + Professional Learning + Tuition + Resources + Research
\rightarrow youtube.com/c/RhGMBCFMSPW \square fmspwales@swansea.ac.uk
© @ ${ }^{\text {GhGMBC_FMSPW }}$

RhGMBC FMSPW
Pheoiri gan Bintseod Abetatav, Sestro
 furthermaths.wales

